HW 9.3: Line integrals, the fundamental theorem & applications

Determine if \mathbf{F} is conservative. If it is, find its potential function f.

1. $\mathbf{F}(x,y) = (2x-3y, -3x+4y-8)$
2. $\mathbf{F}(x,y) = (e^s\sin y, e^s\cos y)$

The follow fields are conservative. Use that fact to evaluate the line integral of \mathbf{F} along C.

3. $\mathbf{F}(x,y) = (2xy^2, 2x^2y)$ and C is $r=(t+\sin(0.5\pi t), t+\cos(0.5\pi t))$ for $0<t<1$
4. $\mathbf{F}(x,y,z) = (yz,xz,xy+2z)$ and C is the straight line segment from $(1,0,-2)$ to $(4,6,3)$
5. For the vector field $\mathbf{F}=(2y^{3/2}, 3xy^{1/2})$
 a) Find the work done by \mathbf{F} to move an object from $(1,1)$ to $(2,4)$
 b) what property of \mathbf{F} makes it possible to answer this question?
6. For the wire lying on the curve $r=(t+\sin t, t^2-\cos t)$ for $2<t<3$ with density $p(x,y)=xe^y$, write the integrals for the mass m, x-moment M_x, y-moment M_y [set up, do not solve]
7. Find the work done by the gravitational field of the sun on the earth when the earth moves from its furthest distance to its closest distance. The furthest distance is 1.52×10^{11} m, the closest distance is 1.47×10^{11} m, the sun mass is 1.99×10^{30} kg, the earth mass is 5.97×10^{24} kg, and $G=6.67\times10^{-11}$ N m2/kg2.

8. The figure below shows a curve C on a contour map of a function f. Find $\int_C \nabla f \cdot d\mathbf{r}$

9. The figure below shows the vector field $\mathbf{F}=(2xy, x^2)$ and three curves from $(1,2)$ to $(3,2)$
 a) explain why $\int_C \mathbf{F} \cdot d\mathbf{r}$ has the same value for all three curves.
 b) what is the value?

10. Suppose an experiment determines that the amount of work required for a force field \mathbf{F} to move a particle from the point $(5,3)$ to the point $(1,2)$ along a curve C_1 is 1.2 J and the work done by \mathbf{F} in moving the particle along another curve C_2 between the same two points is 1.4 J. What can you say about \mathbf{F}? Why?